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We present a spectral theory of the low-frequency response of a harbour to short and
random incident waves. Assuming the incident sea to be stationary and Gaussian, non-
linear extensions are made for the response spectrum. Advantage is taken of the typical
wind-wave spectrum which is dominated by high-frequency components. After show-
ing that nonlinearity is needed only up to the second order in wave steepness, we
extend the mild-slope approximation for constructing the transfer functions. Numeri-
cal examples are presented for a square harbour and constant depth. Discounting fric-
tion losses, the effects of different entrances are compared.

1. Introduction
Harbours are designed to shelter ships from storm-induced sea waves. Long-period

oscillations with periods of one to several minutes often occur, however, inside
harbours which can cause excessive sway of ships, resulting in damage to ship hulls
or mooring systems, or costly delay of loading and unloading operations. The most
studied mechanism is the synchronous resonance by tsunamis which are themselves
of very long periods (10 minutes to an hour). In this case the linear theory of wave
scattering, well-known in physics, has been extended both analytically and numerically
(Miles & Munk 1961; Lee & Raichlan 1972; Hwang & Tuck 1970; Chen & Mei 1974,
etc.; review can be found in Mei 1983 or Mei Stiassnie & Yue 2005). However, many
harbours in the world are attacked much more often by the short incident waves
generated by storms, rather than by tsunamis. Field records from Hualien Harbour on
the eastern (Pacific) coast of Taiwan are typical. Figure 1(c) shows the wave records
at several stations marked in the figure 1(b), during Typhoon Tim, 1994. It is clear
that oscillations measured at Stations 8 and 10 inside the basin are dominated by
low frequencies, unlike the records at Station 2 outside. During Typhoon Longwang
on October 2, 2005, a 7000-ton cargo ship, originally moored near the northern end
of the basin, broke loose and drifted for 1 km southward, then ran aground outside
the harbour and broke up.

In the engineering practice of harbour design and renovation, the linear mechanism
is still widely used as the basis of both theoretical and experimental modelling, by
hypothesizing or estimating the intensity of an incident wave with periods that are
of concern in the harbour. As long waves are known to occur by nonlinearity due
to quadratic mixing of short waves of nearly equal frequencies, improved theories
for narrow-banded and deterministic waves have been proposed by Bowers (1977),
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Figure 1. (a) Taiwan Island. Circle indicates Hualien Harbour facing the Pacific Ocean.
(b) Plan of Hualien Harbour with sites of wave-recording stations. Measuring Stations 8 and
10 are at the northern corner of the basin. Stations 2 and 5 are outside. (c) Wave spectra at
various stations recorded during Typhoon Tim, 1994. Record for Station 5 is omitted.

Mei & Agnon (1989), Wu & Liu (1990). These theories are however inadequate for
representing wind-induced waves which are random and broad-banded.

Vital to wave forecasting, modelling of nonlinear progressive waves in the open sea
is a highly developed, and still developing, branch of oceanography (Koman et al.
1994). Of greater relevance to coastal engineering however, are the effects of complex
coastlines and bathymetry. A theory of long-wave excitation by short waves must in
general account not only for randomness and nonlinearity, but also for diffraction
and refraction. For two-dimensional standing waves in deep water, Sclavounos (1992)
has advanced a systematic stochastic theory for calculating the nonlinear corrections
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of the spectrum. By assuming the incident waves to be a stationary and Gaussian
random process, he showed that the correction starts at the fourth order in wave
steepness, and depends on the frequency responses at first, second and third orders.
With emphasis on the small corrections for the entire frequency range, he presented
numerical results from the explicit solutions of the frequency responses which are
two-dimensional and relative simple to derive.

For the prediction of low-frequency spectra in harbours, in this article we generalize
the spectral theory of Sclavounos, and, for calculating the nonlinear transfer function,
the second-order mild-slope approximation developed recently for monochromatic
incident waves (Chen & Mei 2006). This approximation reduces the three-dimensional
diffraction problems at both orders to two dimensions. Thanks to the coincidence
of two special features, one in the stochastic theory, and the other in the common
characteristics of the coastal sea, only the second-order frequency response suffices.
While the general theory can account for both lateral geometry and bathymetry,
numerical examples are given only for constant depth and a simple planform in order
to focus attention on the physical consequence of sheltering. Effects of the harbour
entrance are examined.

2. Formulation of nonlinear problem
For convenience we first summarize the perturbation equations for small-amplitude

waves, based on the usual assumptions of an incompressible and inviscid fluid, and
irrotational flow. Expand in powers of the wave steepness ε = O(kA):

Φ = Φ1 + Φ2 + · · · , ζ = ζ1 + ζ2 + · · · , (2.1)

where k is the characteristic wavenumber, A is the characteristic amplitude. The
subscripts indicate the order of magnitude in powers of ε, i.e. Φ1 = O(ε), Φ2 = O(ε2),
etc. Let the horizontal and three-dimensional gradient operators be distinguished by
∇2 and ∇3. At each order, Φj satisfies the Laplace equation(

∇2
2 +

∂2

∂z2

)
Φj = 0, j = 1, 2, 3, . . . (2.2)

in the fluid, and

∂Φj

∂z
= ∇2h · ∇2Φj, z = −h(x, y), j = 1, 2, 3, . . . (2.3)

on the sloping seabed. All lateral boundaries are assumed for simplicity to be vertical
throughout the depth, hence

∂Φj

∂n
= 0, j = 1, 2, 3, . . . (2.4)

where n is in the horizontal plane. On the still water surface, z = 0, the boundary
condition for the first-order potential is homogeneous:

g
∂Φ1

∂z
+

∂2Φ1

∂t2
= 0, z = 0, (2.5)

while that for the second-order potential is not:

∂Φ2

∂z
+

1

g

∂2Φ2

∂t2
=

1

g2

∂Φ1

∂t

∂

∂z

[
g

(
∂Φ1

∂z

)
+

∂2Φ1

∂t2

]
− 1

g

∂

∂t
(∇3Φ1)

2 , z = 0. (2.6)



264 M.-Y. Chen, C. C. Mei and C.-K. Chang

The free-surface displacement at the first order, ζ1, is related to Φ1 by

ζ1 = −1

g

[
∂Φ1

∂t

]
z=0

. (2.7)

The second-order correction, ζ2, is the sum of two parts,

ζ2 = ζ
(1)
2 + ζ

(2)
2 , (2.8)

where

ζ
(1)
2 =

[
1

g2

∂Φ1

∂t

∂2Φ1

∂t∂z
− 1

2g
(∇3Φ1)

2

]
z=0

, (2.9)

and

ζ
(2)
2 =

[
−1

g

∂Φ2

∂t

]
z=0

. (2.10)

The first part ζ
(1)
2 can be immediately calculated from the first-order solution, while

the second ζ
(2)
2 depends on the second-order potential Φ2 which is the task here.

3. Correlation and frequency spectrum
We now extend the stochastic approach of Sclavounos (1992) from two-dimensional

standing waves in deep water to scattering by a more complex bathymetry and
coastline geometry. A basic assumption is that the free-surface height is a stationary
and Gaussian random process. Denoting ensemble averages by overlines, we define
the correlation function of the total free-surface height ζ (x, y, t) by

H (x, y, τ ) = ζ (x, y, t) ζ ∗ (x, y, t + τ ) (3.1)

where ζ ∗ denotes the complex conjugate of ζ . (Since ζ is real it is equal to ζ ∗. The
choice in the definition (3.1) facilitates the treatment of Fourier transforms.) The
corresponding frequency spectrum S is its Fourier transform,

S (x, y, ω) =
1

2π

∫ ∞

−∞
dτ eiωτH (x, y, τ ). (3.2)

Introducing the expansion (2.1), the total correlation function of the free surface
comprises quadratic products (ζ1, ζ1) at order O(ε2), (ζ1, ζ2) at O(ε3), and (ζ2, ζ2)
and (ζ1, ζ3) at O(ε4). Since ζ1, ζ2, ζ3, . . . involve Fourier transforms with integrands
proportional to A, AA, AAA, . . . respectively, the right-hand side of (3.1) involves
ensemble averages of even and odd products of A. Due to Gaussianity, all odd
products give zero averages, while all even products can be reduced to averages of
quadratic products. It follows that nonlinear corrections begin at O(ε4),

H (τ ) = H2 (τ ) + H4 (τ ) + · · · (3.3)

where the dependence on (x, y) is not shown for the sake of brevity and

H2 (τ ) = ζ1 (t) ζ ∗
1 (t + τ ) and H4 (τ ) = H22 (τ ) + H13 (τ ) + H31 (τ ) (3.4)

are of O(ε2) and O(ε4) respectively with

H22 = ζ2 (t) ζ ∗
2 (t + τ ), H13 = ζ1 (t) ζ ∗

3 (t + τ ), H31 = ζ3 (t) ζ ∗
1 (t + τ ). (3.5)

The corresponding frequency spectrum is

S(ω) = S2(ω) + S4(ω) + · · · (3.6)
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where S2 is the Fourier transform of H2 as defined by (3.2). The nonlinear correction
is

S4 (ω) = S22 (ω) + S13 (ω) + S31 (ω) (3.7)

where S22, S13 and S13 are respectively the Fourier transforms of H22, H13 and H31.
For convenience and clarity, we first recall the statistical description of the leading-

order waves. Let the free-surface displacement be

ζ
(I )
1 (x, y, t) =

∫ ∞

−∞
A(ω) eik · x−ωt dω =

∫ ∞

−∞
A (ω) eik(ω)r cos(θ−θI )−iωt dω, (3.8)

which represents unidirectional plane waves with the random amplitude spectrum
A, with r, θ being the polar coordinates and θI the incident angle. Note that
A∗ (ω) = A (−ω) since ζI is real. For each frequency ω, the wavenumber k (ω) is
given by the dispersion relation,

ω2 = gk tanh kh. (3.9)

At the leading order, the correlation function of the incident waves is

HI
2 (x, τ ) = ζ

(I )
1 (x, t) ζ (I )

1

∗
(x, t + τ ) =

∫ ∞

−∞
SI (x, ω2) eiω2τdω2 (3.10)

where

SI (x, ω2) =

∫ ∞

−∞
A(ω1)A∗ (ω2) ei[k(ω1)−k(ω2)]r cos(θ−θI )−i(ω1−ω2)t d ω1. (3.11)

Due to the assumption of stationarity, we must have

A(ω1)A∗ (ω2) = SA (ω1) δ (ω1 − ω2), (3.12)

which implies homogeneity, where SA(ω) is the two-sided frequency spectrum. It
follows that SI (x, ω2) = SI (ω2) ≡ SA(ω) is independent of space and

HI
2 (x, τ ) =

∫ ∞

−∞
SA (ω2) eiω2τ dω2. (3.13)

Since HI
2 is real, SA must be symmetric, i.e., SA (ω2) = SA (−ω2) .

Because of the complex bathymetry and lateral boundaries, diffraction and
refraction affect the free-surface displacement near the scatterers. By linearity one
expects the total first-order displacement to be of the form

ζ1 (x, y, t) =

∫ ∞

−∞
A (ω) Γ1 (x, y, ω) e−iωt dω, (3.14)

where the frequency response (transfer function) Γ1 will be found from the linear
scattering theory. The following relation holds:

S2 (x, y, ω) = SA (ω) |Γ1 (x, y, ω)|2 , (3.15)

as in all linearized time-invariant problems. Since ζ1 is real and A(ω) = A∗(−ω), we
must have

Γ ∗
1 (x, y, ω) = Γ1 (x, y, −ω). (3.16)

Following Sclavounos, we begin with the following formal expressions for the
free-surface displacement at O(ε2):

ζ2 (x, y, t) =

∫∫ ∞

−∞
A(ω1)A (ω2) Γ2 (x, y, ω1, ω2) e−i(ω1+ω2)t dω1 dω2, (3.17)
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and at O(ε3),

ζ3 (x, y, t) =

∫∫∫ ∞

−∞
A(ω1)A (ω2) A (ω3) Γ3 (x, y, ω1, ω2, ω3) e−i(ω1+ω2+ω3)t dω1 dω2 dω3

(3.18)

where Γ2 (x, y, ω1, ω2) and Γ3 (x, y, ω1, ω2, ω3) are the transfer functions yet unknown.
From (3.17) and (3.5), we get

H22 =

∫∫∫∫ ∞

−∞
dω1 dω2 dω3 dω4A(ω1)A (ω2) A∗ (ω3) A∗ (ω4)

× Γ2 (x, y, ω1, ω2) Γ ∗
2 (x, y, ω3, ω4) e−i(ω1+ω2−ω3−ω4)te i(ω3+ω4)τ . (3.19)

By invoking Gaussianity,

A(ω1)A (ω2) A∗ (ω3) A∗ (ω4) = A(ω1)A (ω2) A∗ (ω3) A∗ (ω4)

+ A(ω1)A∗ (ω3) A (ω2) A∗ (ω4) + A(ω1)A∗ (ω4) A (ω2) A∗ (ω3) (3.20)

and with repeated use of A (ω) =A∗ (−ω) and with (3.12), we find

A(ω1)A (ω2) A∗ (ω3) A∗ (ω4)

= SA(ω1)δ (ω1 + ω2) SA (ω3) δ (ω3 + ω4) + SA(ω1)δ (ω1 − ω3) SA (ω2) δ (ω2 − ω4)

+ SA(ω1)δ (ω1 − ω4) SA (ω2) δ (ω2 − ω3) . (3.21)

Because of the delta functions, all four-fold integrals in (3.19) can be simplified to
either single or double integrals, yielding finally,

H22 (x, y, τ ) =

[∫ ∞

−∞
SA(ω1)Γ2 (x, y, ω1, −ω1) dω1

]2

+

∫ ∞

−∞

∫ ∞

−∞
SA(ω1)SA (ω2) {Γ2 (x, y, ω1, ω2) Γ ∗

2 (x, y, ω1, ω2)

+ Γ2 (x, y, ω1, ω2) Γ ∗
2 (x, y, ω2, ω1)}ei(ω1+ω2)τ dω1 dω2. (3.22)

With the transformation

ω = ω1 + ω2, (3.23)

(3.22) becomes, after hiding the spatial dependence,

H22(τ ) =

∫ ∞

−∞
dωeiωτ δ(ω)[ζ 2]

2 +

∫ ∞

−∞
dω eiωτ

∫ ∞

−∞
SA(ω1)SA(ω−ω1)Γ2(ω1, ω−ω1)

× [Γ ∗
2 (ω1, ω − ω1) + Γ ∗

2 (ω − ω1, ω1)] dω1. (3.24)

By Fourier transform, the corresponding frequency spectrum is

S22(ω) = δ(ω)[ζ2]
2
+ I (ω) (3.25)

where I denotes the integral:

I(ω) =

∫ ∞

−∞
SA(ω1)SA(ω − ω1)Γ2(ω1, ω − ω1)[Γ

∗
2 (ω1, ω − ω1) + Γ ∗

2 (ω − ω1, ω1)] dω1

=

∫ ∞

−∞
SA(ω1)SA (ω2) Γ2 (ω1, ω2) [Γ ∗

2 (ω1, ω2) + Γ ∗
2 (ω2, ω1)] dω1. (3.26)

where ω1 and ω2 are related by (3.23). The first term in (3.25) corresponds to the
square of the mean sea level; this quantity is usually not available from field data, as
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indicated by figure 1, due probably to limits of instrumentation, and can be affected
by tides. Since our focus is limited to low frequencies (small ω), the remaining integral
I can be evaluated by first obtaining the transfer function Γ2 (x, y, ω1, ω2) only in a
narrow strip near the diagonal ω1 + ω2 = 0 instead of the entire plane of ω1, ω2. This
is fortunate since it will reduce the computational efforts significantly.

For later computation of I, the integration variable ω1 is replaced by −ω1 over
the interval [−∞, 0]. Making use of SA(ω1) = SA (−ω1), (3.26) can be written as a
one-sided integral

I(ω) =

∫ ∞

0

SA(ω1){SA(ω − ω1)Γ2(ω1, ω − ω1)[Γ
∗
2 (ω1, ω − ω1) + Γ ∗

2 (ω − ω1, ω1)]

+ SA(ω + ω1)Γ2(−ω1, ω + ω1)[Γ
∗
2 (−ω1, ω + ω1) + Γ ∗

2 (ω + ω1, −ω1)]} dω1. (3.27)

By steps similar to those leading to (3.22), H13 is found to be

H13(x, y, τ ) =

∫ ∞

−∞
dω1 eiω1τ SA(ω1)Γ1(x, y, ω1)

{∫ ∞

−∞
SA(ω2)[Γ

∗
3 (x, y, ω1, ω2, −ω2)

+ Γ ∗
3 (x, y, ω2, ω1, −ω2) + Γ ∗

3 (x, y, ω2, −ω2, ω1)] dω2

}
. (3.28)

The corresponding frequency spectrum S13 is, after replacing ω1 by ω,

S13(ω) = SA(ω)Γ1(ω)

∫ ∞

−∞
SA(ω2)[Γ

∗
3 (x, y, ω, ω2, −ω2)

+ Γ ∗
3 (x, y, ω2, ω, −ω2) + Γ ∗

3 (x, y, ω2, −ω2, ω)] dω2. (3.29)

Furthermore,

H31(x, y, τ ) =

∫ ∞

−∞
dω1 eiω1τ

{
SA(ω1)Γ

∗
1 (x, y, ω1)

∫ ∞

−∞
SA(ω2)[Γ3(x, y, ω1, ω2, −ω2)

+ Γ3(x, y, ω2, ω1, −ω2) + Γ3(x, y, ω2, −ω2, ω1)] dω2

}
. (3.30)

The dependence on x, y is omitted on the right for brevity. The corresponding
frequency spectrum is

S31(x, y, ω) = SA(ω)Γ ∗
1 (x, y, ω)

∫ ∞

−∞
SA(ω2)[Γ3(x, y, ω, ω2, −ω2)

+ Γ3(x, y, ω2, ω, −ω2) + Γ3(x, y, ω2, −ω2, ω)] dω2. (3.31)

In summary, the nonlinear spectral correction S4 is the sum of (3.25), (3.29) and
(3.31). In principle, the main task is to find the transfer functions Γ1, Γ2 and Γ3

which are associated with the first-, second- and third-order diffraction, and, if the
sea depth is slowly varying, refraction also. For simple plane standing waves in deep
water, Sclavounos derived explicitly these transfer functions and calculated S22, S13

and S31 for all frequencies 0 < ω < ∞ after taking the JONSWAP spectrum for SA. For
complex bathymetry and geometry, the tasks of computing Γ2(x, y; ω1, ω2) for all pairs
of frequencies in the (ω1, ω2)-plane, and analyzing and computing Γ3(x, y; ω1, ω2, ω3)
for all ωi are prohibitive.

In typical sea spectra such as JONSWAP and their extension to finite water
depth (see figure 3), SA(ω) is practically zero for small ω. In view of relation (3.15),
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Figure 2. Plane of (ω1, ω2). Γ2 is computed for frequency pairs inside the shaded strips.
Frequencies ωa and ωb are the truncated limits of the incident sea spectrum.

the leading-order harbour response S2(x, y, ω) is virtually zero in the low-frequency
range, where the total spectrum is dominated by the nonlinear correction S4. Since
S13(x, y, ω) and S31(x, y, ω) are in direct proportion to SA(x, y, ω), they must also be
negligibly small at low frequencies. This result makes it unnecessary to compute Γ3

or ζ3 to obtain S4, for small ω. On the other hand, S22(x, y, ω) is not proportional
to SA(ω) but depends on it through a convolution integral in (3.26). Thus S22(x, y, ω)
is not necessarily zero when SA(ω) vanishes. It would appear at first sight that one
must find the second-order transfer function Γ2(x, y, ω1, ω2) for many (in principle,
infinite) pairs of frequencies to cover nearly the entire plane of (ω1, ω2). Fortunately
our interest is in the low-frequency response, i.e. small ω. Hence Γ2(x, y, ω1, ω2) is
needed only for frequency pairs in a narrow strip near the diagonal ω1 + ω2 = 0. In
numerical computations, the incident sea spectrum SA(ω) can be truncated so that
it is non-zero only in a finite range ωa < ω < ωb. Thus, only the pairs in the shaded
portions of the narrow strip shown in figure 2 are relevant. These two advantages
are particularly suited to the harbour resonance problem (and to slow-drift problems
of ships and floating platforms). In the range of high frequencies, contributions by
S22, S13 and S31 are of O(ε4) importance but are all much smaller than S2 = O(ε2);
these corrections are not pursued here.

We now turn to the transfer functions Γ1(x, y, ω) and Γ2(x, y, ω1, ω2).

4. First-order transfer function
Let the first-order velocity potential be represented by the Fourier–Stieltjes integral

Φ1 (x, t) =

∫ ∞

−∞
A (ω) φ1 (x, ω) e−iωt dω, (4.1)
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where x = (x, y, z). It follows from the first-order perturbation equations for Φ1 that
the first-order frequency response φ1 is governed by(

∇2
2 +

∂2

∂z2

)
φ1 (x, ω) = 0, −h(x, y) < z < 0, (4.2)

∂φ1 (x, ω)

∂z
= −∇2φ1 (x, ω) · ∇2h, z = −h(x, y), (4.3)

∂φ1 (x, ω)

∂z
− ω2

g
φ1 (x, ω) = 0, z = 0. (4.4)

For slowly varying depth this diffraction problem is in general three-dimensional.
An efficient approximation is the well-known mild-slope equation which involves
only two horizontal dimensions as in the limiting case of constant depth. The plane
diffraction problem in (x, y) can be numerically solved by the hybrid-element method.
Specifically, by assuming the potential to be dominated by the propagating mode,

φ1 (x, ω) = − ig

ω

cosh [k (ω) (z + h)]

cosh [k (ω) h]
Γ1 (x, y, ω), (4.5)

Γ1(x, y, ω) is shown to be governed by the two-dimensional mild-slope equation of
Chamberlain & Porter (1995). The associated elliptic boundary-value problem can be
solved by the hybrid-element method of Chen & Mei (1974).

5. Second-order transfer function
5.1. The potential

At the second order, Φ2 satisfies the three-dimensional Laplace equation and the
seabed condition (2.3). Let us rewrite the inhomogeneous free-surface boundary
condition as

∂Φ2

∂z
+

1

g

∂2Φ2

∂t2
= F, z = 0, (5.1)

where

F =
1

g2

∂Φ1

∂t

∂

∂z

[
g

(
∂Φ1

∂z

)
+

∂2Φ1

∂t2

]
− 1

g

∂

∂t
(∇3Φ1)

2 , z = 0. (5.2)

With (4.1), the forcing function F becomes

F =

∫∫ ∞

−∞
A(ω1)A(ω2)f (x, y, ω1, ω2) e−i(ω1+ω2)t dω1 dω2 (5.3)

where

f (x, y, ω1, ω2) =

{
− iω1

g
φ1 (x, ω1)

[
∂2φ1 (x, ω2)

∂z2
− ω2

2

g

∂φ1 (x, ω2)

∂z

]
+

i (ω1 + ω2)

g
∇3φ1 (x, ω1) · ∇3φ1 (x, ω2)

}
z=0

. (5.4)

Putting (4.5) into (5.4), we obtain

f (x, y, ω1, ω2) = β1 (ω1, ω2) Γ1 (x, y, ω1) Γ1 (x, y, ω2)

+ β2 (ω1, ω2) ∇2Γ1 (x, y, ω1) · ∇2Γ1 (x, y, ω2) (5.5)
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with

β1 (ω1, ω2) =
ig [k (ω2)]

2

ω2

− iω3
2

g
− i (ω1 + ω2) ω1ω2

g
, (5.6)

and

β2 (ω1, ω2) = − i (ω1 + ω2) g

ω1ω2

. (5.7)

Unlike the monochromatic case studied in Chen & Mei (2006), the forcing function
here depends on two frequencies. Note for later use that if ω1 + ω2 = 0,

β1 (ω1, −ω1) = −β1 (−ω1, ω1) , β2 (ω1, −ω1) = β2 (−ω1, ω1) = 0,

which implies

f (ω1, −ω1) = −f (−ω1, ω1) . (5.8)

Let us express the second-order potential in the form

Φ2 (x, t) =

∫∫ ∞

−∞
A(ω1)A (ω2) φ2 (x, ω1, ω2) e−i(ω1+ω2)t dω1 dω2. (5.9)

Putting (5.9) into (2.2), (2.3) and (2.6), we find that φ2 (x, ω1, ω2) satisfies the same
conditions (4.2) and (4.3) as φ1, and the inhomogeneous free-surface boundary
condition,

∂φ2

∂z
− (ω1 + ω2)

2

g
φ2 = f (x, y, ω1, ω2) , z = 0. (5.10)

Together with the weak radiation condition, (2.2), (2.3), (2.4) and (5.10) form the
second-order boundary value problem.

As in the case of monochromatic waves (Chen & Mei 2006), we assume the
second-order potential φ2(x, ω1, ω2) to take the form

φ2 (x, ω1, ω2) = − ig

ω1 + ω2

∞∑
m=0

ξm (x, y, ω1, ω2)
cos κm(z + h)

cos κmh
, (5.11)

where κm, m =1, 2, . . . are the real roots of the equation

− (ω1 + ω2)
2 = gκm tan κmh, (m − 1/2) π � κmh � mπ, (5.12)

and κ0 is imaginary

κ0 = −iκ̂0, (5.13)

with κ̂0 being the real root of the dispersion equation

(ω1 + ω2)
2 = gκ̂0 tanh κ̂0h. (5.14)

Here m =0 represents the propagating mode in which the waves propagate to infinity,
while m � 1 represent the evanescent modes localized near the scatterers. Applying
the vertical averaging procedure as for the mild-slope equation at the first order, we
obtain a coupled set of modified mild-slope equations for ξ� (x, y, ω1, ω2). Since the
procedure of derivation is identical to that for the limiting case of monochromatic
waves in Chen & Mei (2006), only the results are given:

∞∑
�=0

{∇ · [Am,�∇ξ�] + Bm,�∇ξ� · ∇h + Cm,�ξ�}

= −i (ω1 + ω2) f (x, y, ω1, ω2) , m = 0, 1, 2, 3, . . . (5.15)
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where

Am,� =
gh

2 cos2 κ�h

(
1 +

sin 2κ�h

2κ�h

)
δm� (5.16)

is diagonal;

Bm,� =

{
0, when m = �

g(Um,� − U�,m), when m �= �
(5.17)

with

Um,� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin 2κmh − 2κmh cos 2κmh

4 cos2 (κmh) (2κmh + sin 2κmh)
, when m = �,

− κ2
�(

κ2
� − κ2

m

)
cos κmh cos κn,lh

, when m �= �,

(5.18)

and

Cm,� = −κ2
mAm,� + gUm,�∇2h + gVm,� (∇h)2 . (5.19)

The expressions for Vm,� are, for m = �,

Vm,m =
−κm sec2(κmh)

12(2κmh + sin 2κmh)3
[(2κmh)4 +4(2κmh)3 sin 2κmh+9 sin(2κmh) sin 4κmh

− 12κmh(κmh + sin 2κmh)(cos2 2κmh − 2 cos 2κmh + 3)], (5.20)

and for m �= �,

Vm,� =
−2κ� sec κmh sec κ�h

(2κ�h + sin 2κ�h)

[
4κ2

� κ
2
m +

(
κ4

� − κ4
m

)
sin2 κ�h

](
κ2

� − κ2
m

)2
. (5.21)

Equation (5.15) forms a matrix equation and Cm,� contains O(µ0), O(µ), and O(µ2)
terms where µ ≡ O(∇h/kh) � 1. The unknowns ξ�, � =0, 1, 2, 3, . . . , must be solved
subject to the usual no-flux condition on lateral walls, and the weak radiation
condition at infinity.

For later use we note that if ω1 + ω2 = 0, the forcing term in (5.15) vanishes,
hence

ξ�(ω1, −ω1) ≡ 0, � = 0, 1, 2, 3, . . . . (5.22)

If the complex harbour geometry and variable bathymetry are limited to a finite
region, the two-dimensional hybrid element analysis described in Chen & Mei (2006)
for monochromatic incident waves can be applied to solve the coupled problems for
ξ�(x, y, ω1, ω2), � = 0, 1, 2, 3, . . . , for each frequency pair ω1, ω2.

In the limit of constant depth everywhere, (5.15) becomes a set of uncoupled
two-dimensional Helmholtz equations,

∇2ξ� − κ2
� ξ� = −i

(ω1 + ω2)

A�,�

f, � = 0, 1, 2, 3, . . . . (5.23)

Each ξ� can be solved separately by the two-dimensional hybrid-element method. The
potential amplitude φ2 and hence Φ2 are then solved.
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From (2.8), (2.9) and (2.10), the frequency-response function of the second-order
free-surface elevation defined in (3.17) can be calculated according to

Γ2 (x, y, ω1, ω2) = −ω1ω2

g2
φ1 (x, ω1)

∂φ1 (x, ω2)

∂z
− 1

2g
∇3φ1 (x, ω1) · ∇3φ1 (x, ω2)

+
iσ

g
φ2 (x, ω1, ω2)

=

(
ω2

2

g
+

ω1ω2

2g

)
Γ1(ω1)Γ1 (ω2) +

g

2ω1ω2

∇2Γ1(ω1) · ∇2Γ1 (ω2)

+

∞∑
�=0

ξ� (ω1, ω2) (5.24)

which will be used to find the spectrum S22.

6. The mean sea level
Using (5.24) in (3.17) and taking the ensemble average, we obtain the mean sea

level

ζ2 (x) =

∫ ∞

−∞
SA(ω1)Γ2 (x, y, ω1, −ω1) dω1

=

∫ ∞

0

SA(ω1) [Γ2 (x, y, ω1, −ω1) + Γ2 (x, y, −ω1, ω1)] dω1. (6.1)

However, there is no contribution to the last integral from the series in (5.24)
since ξ� (ω1, −ω1) vanishes identically as noted in (5.22). Furthermore, since
Γ1(−ω1) = Γ ∗

1 (ω1),

Γ2 (x, y, ω1, −ω1) =
ω2

1

2g
Γ1(ω1)Γ

∗
1 (ω1) − g

2ω2
1

∇2Γ1(ω1) · ∇2Γ
∗
1 (ω1) .

= Γ2 (x, y, −ω1, ω1) . (6.2)

It follows finally that

ζ2 (x) =

∫ ∞

0

SI (ω1)

[
ω1

2

g
Γ1(ω1)Γ

∗
1 (ω1) − g

ω2
1

∇2Γ1(ω1) · ∇2Γ
∗
1 (ω1)

]
dω1 (6.3)

which depends only on the first-order potential.

7. Numerical examples
We shall adopt the TMA spectrum as our one-sided spectrum 2SA of the incident

sea. TMA refers to the sites where wave data were collected to derive this spectrum:
TEXEL and MARSEN in the North Sea, and ARSLOE at Duck, North Carolina.
The TMA spectrum is a modified JONSWAP spectrum for shallow seas (Ochi 1998),

ST MA(ω) = SJWP (ω)

(
ω2h/g

)3

tanh kh + kh cosh2 kh
, ω > 0, (7.1)

where

SJWP (ω) = α
g2

ω5
exp

[
−1.25

ω4

ω4
p

]
γ exp[−(ω − ωp)2/2(σωp)2] (7.2)
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Figure 3. TMA spectrum. Dashed curve: calculated from (7.1) with inputs h = 20 m,
x̄ = 3000 and Ū = 20 m s−1. Solid curve: truncated spectrum, 2SA in our computations.

and ω and k are governed by the dispersion relation. The correction factor in (7.1)
originally introduced for Phillips’ spectrum is due to Kiatigorodskii, Krasitskii &
Zaslavskii (1975). The empirical constants for the JONSWAP part are

γ = 3.3, α = 0.076x̄−0.22, σ =

{
0.07, ω < ωp,

0.09, ω > ωp.

The dimensionless fetch x̄ and the peak frequency ωp are defined in terms of the wind
speed Ū and fetch distance x according to

x̄ = gx/Ū 2, ωp = (2π)3.5(g/Ū )x̄−0.33.

In figure 3 the TMA spectrum is shown by the dashed curve for Ū = 20 m s−1 and
x̄ = 3000 so that the peak frequency is ωp = 0.767 rad s−1. To estimate the characterstic
wave steepness ε we first compute the significant wave height according to

Hs =

√
4

∫ ∞

0

2SA(ω) dω (7.3)

yielding the result Hs = 1.85 m. With the peak wavenumber kp = 0.068 m−1 found by
the dispersion relation, the characteristic wave steepness is then ε = kpHs/2 = 0.063.
In our numerical computations the spectrum is truncated so that it is non-zero only
within the range 0.6 <ω < 1.8, as shown by the solid curve. With reference to figure 2,
the lower and upper cutoff frequencies are ωb = 0.6 rad s−1 and ωa = 1.8 rad s−1 respect-
ively; the corresponding circular frequencies are fb = 3/10π Hz and fa = 9/10π Hz.

A large part of the computational effort is of course the solution of the second-
order diffraction problem for φ2(x, y, z, ω1, ω2). While the three-dimensional problem
is now reduced to two, the numerical computation of the two-dimensional modal
amplitudes ξ�, l = 0, 1, 2, 3, . . . , from the coupled equations (5.15) is still a demanding
task in general, especially because computations must be repeated for many pairs
of frequencies as shown in figure 2. An example of such a numerical task has been
demonstrated only for monochromatic waves approaching a vertical cylinder on the
top of a circular shoal (Chen & Mei 2006). In the limit of contant depth everywhere,
the modes are uncoupled and the mild-slope equations for all modes can be solved
separately. Since the primary mechanism of the harbour resonance is associated with
sheltering by lateral boundaries, we shall limit our attention here to the simpler
example of a small square harbour (300 m by 300 m) behind a straight coast in
constant depth of 20 m. The hybrid-element method used in Chen & Mei (2006) is
modified for both first- and second-order transfer functions.
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Figure 4. Plan view of a protected square basin (Case iii). For Cases (i) and (ii), the entrance
widths are 60 m and 30 m respectively, without the detached breakwater.

It well-known in the linearized theory (Miles & Munk 1961) that, without account-
ing for frictional losses at the entrance, the resonance peaks in the plot of amplification
vs. frequency are taller and thinner for the Helmholtz and the lowest modes if the
entrance is narrower (the harbour paradox). To examine the possible nonlinear
manifestations, three cases are considered for comparison: (i) a wide entrance (of
width 60 m) open to the sea, (ii) a narrow entrance (of width 30 m) open to the sea,
and (iii) a narrow entrance protected by a detached breakwater. The dimensions of
Case (iii) are shown in figure 4. All breakwaters are of caisson type and 5 m thickness.
Analytical solutions are used for the semi-infinite sea outside a semi-circle which is
centred at the entrance and of radius (30 m, 15 m, and 62 m) for Cases ((i), (ii) and (iii))
respectively. Simple triangular elements are used to discretize the basin and the region
within the semi-circle. The maximum element size is Le = 1 m, so that kpLe =0.068,
or Le/λp = 0.0108. The total number of nodes used is Np = (164 062, 162 935, 171 209)
for Cases ((i), (ii), (iii)) respectively. Only normal incidence ( θI =3π/2) is considered.

In the computation of the double-integral in S22, the main task is to compute the
transfer function Γ2 (ω1, ω2) at many points in the shaded strips in the plane of ω1, ω2,
as shown in figure 2. With the frequency increment chosen to be ∆ω, ∆ω1, ∆ω2 =
0.01 rad s−1, the strips within the range 0.6 rad s−1, < ω1, ω2 < 1.8 rad s−1 are discre-
tized. At each point, the hybrid-element method is needed and finite element matrix
equations have to be solved numerically for ξ�. For each ω, i.e. along each diagonal
line ω = ω1 + ω2, the total number of points is at least 100. We have computed the
solutions from ω = 0.01 rad s−1 to 0.6 rad s−1, hence the total number of points (ω1, ω2)
needed for each mode is 10 620. The CPU time for solving each point is around 15
minutes. Using 20–25 personal computers in parallel, the total computational time
for one of the three Cases is around two weeks.

7.1. First order

As an overall representation of the first-order effect, we first display in figure 5 the
spatially averaged frequency response 〈Γ1(ω)〉 for all ω defined by

〈Γ1(ω)〉 =

(
1

Ab

∫∫
Ab

|Γ1(x, y, ω)|2 dx dy

)1/2

, 0 < ω, (7.4)

where Ab denotes the basin area.
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Figure 5. Basin-averaged first-order frequency response 〈Γ1(ω)〉: (a) opening 60 m, (b) 30m,
(c) 30 m with protection.

The lowest peaks, at frequencies ω = 0.032 rad s−1, ω = 0.028 rad s−1 and ω = 0.027 rad
s−1 for Case (i), (ii) and (iii) respectively, correspond to the Helmholtz mode or
pumping mode where the free surface within the harbour rises and falls in unison.
The remaining non-Helmholtz modes have been identified as the natural modes of
the closed basin,

ηn,m = an,m cos

[
nπ

300
(x + 150)

]
cos

[
mπ

300
(y + 305)

]
. (7.5)

The greatest amplification occurs at the first (Helmholtz) peak. The heights of this
and other low-frequency peaks (ω < 0.6) are greater for the narrower entrance, a con-
sequence of the harbour paradox, since friction is unaccounted for. On the other hand,
the high-frequency peaks (ω > 0.6) are lower for the narrower entrances. The detached
breakwater reduces the high-frequency response even further. It should be pointed out
that local responses at different stations may differ quantitatively from the average, es-
pecially if the station is situated at either a node or an antinode of a particular natural
mode. The effects of the entrance geometry are, however, qualitatively the same.

The spatially averaged linear spectra S2(ω) for three different entrances are shown
in figure 6. Recall from relation (3.15) that S2(ω) is proportional to the incident wave
spectrum, hence is essentially zero for ω < 0.6 and not plotted. It can be seen that
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Figure 6. Basin-averaged first-order spectrum S2(ω): (a) opening 60m, (b) 30 m, (c) 30 m
with protection. Only the high-frequency range is shown.

among the three entrances, the area under S2(ω) is the largest for Case (i) and the
smallest for Case (iii) From (7.3), contributions of the low-frequency spectral peaks
to the significant wave heights Hs are 1.2 m, 0.8 m and 0.5 m for Cases (i) (ii) and (iii)
respectively, obtained by calculating the area under the S2 curve. All are of course
less than Hs = 1.85 m of the incident waves.

7.2. Nonlinear effects

We now examine the nonlinear corrections. Figures 7(a), 7(b) and 7(c) give the
mean-sea-level variations for three entrances. In general better protection at the
entrance leads to lower maximum setup/setdown. According to (6.1), the mean-
sea-level setup/setdown is an accumulated effect of various frequencies. To better
understand the computed result, it is useful to describe the mean sea level as simple
harmonic standing waves in the closed basin, described by (7.5),

η20

a2
n,m

=
ω2

n,m

g

∣∣∣∣ cos

[
nπ

300
(x + 150)

]
cos

[
mπ

300
(y + 305)

]∣∣∣∣2
− g

ω2
n,m

nπ

300

{
sin

[
nπ

300
(x + 150)

]
cos

[
mπ

300
(y + 305)

]}2

− g

ω2
n,m

mπ

300

{
cos

[
nπ

300
(x + 150)

]
sin

[
mπ

300
(y + 305)

]}2

, (7.6)
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Figure 7. Setup/setdown for (a) wide entrance of width 60 m, (b) narrow entrance of width
30 m, (c) narrow entrance of 30 m width with breakwater.

which follows from the time average of (2.9). Since the most energetic modes are the
first eight (ωn,m, with (n, m) = (0, 5), (2, 5), (4, 4), (0, 6), (6, 1), (4, 5), (6, 3) and (0, 7))
which are all in the range of 0.6 rad s −1 < ω < 1.8 rad s −1, they are the largest contrib-
utors to ζ̄2. Due to the staggering of the nodal and antinodal lines, a combination of
all these modes renders a very complex picture of the mean free surface in figure 7.

The basin-averaged low-frequency wave spectra obtained from S22(ω) are shown in
figure 8 for three entrances. The first two peaks in S22 correspond to the Helmholtz
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Figure 8. Basin-averaged nonlinear correction 2S22(ω) in the low-frequency range:
(a) opening 60 m, (b) 30 m, (c) 30 m with protection.

mode and the first non-Helmholtz mode observed in the first-order response curves,
with similar dependence on the opening. The phenomenon of the harbour paradox
known in the first-order result is again observed. It can be seen that most of the
low-frequency energy concentrates in the neighbourhood of the first two modes.

Despite the differences in geometry, qualitative comparisons can be made with the
field data from Hualien Harbour during Typhoon Tim. As can be seen in figure 1,
high-frequency peaks at inside Stations 8 and 10 are greatly reduced by a factor of
1/200, due to the effective protection by the breakwater, but the low-frequency peaks
are enhanced by a factor of a hundred.

For qualitative comparison of the computed result with the observed spectra during
Typhoon Tim in Hualien Harbour, we present in figure 9 the composite spectrum
S(f ) = S2(f )∪S22(f ) for both the low- and high-frequency ranges as a function of the
circular frequency f = ω/2π Hz. In the high-frequency range (3/10π < f < 9/10π Hz),
S2 is plotted without the correction for S4. In the low-frequency range (0<f < 3/10π
Hz), S22 = S4 is shown instead. Use is made of the relation Sf (f ) = 2πS(ω). The
computed spectra bear strong qualitative resemblance to the records at Hualien
Harbour. In particular the result for Case (iii) where the entrance is protected most
is very similar to the observed spectra at the inside stations 8 and 10 far from the
harbour entrance.
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Figure 9. Spatial-averaged spectrum 2S(f ) (Case i). High-frequency range: 2S(f ) = 2S2(f ),
f > 3/10π Hz. Low-frequency range: 2S(f ) = 2S22(f ), f < 3/10π Hz. (a) for 60 m opening,
(b) 30 m opening, (c) 30 m opening with breakwater.

8. Concluding remarks
In this article we have presented the theory of long-period resonance in a harbour

by random short incident waves of a broad frequency band. Under the assumptions
that the incident waves are stationary and Gaussian, the nonlinear correction to
the response spectrum requires in principle the solution of not only the first- and
second- but also the third-order diffraction problems. Thanks to a common feature
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that coastal waves have negligible energy at low frequencies, the first two orders
are sufficient for our purpose. The second-order mild-slope approximation recently
reported by us is extended so that only two-dimensional discretization is need to solve
the intrinsically three-dimensional diffraction problems. To examine the resonance in
a partially enclosed region we treated an example of a small harbour in a sea of
constant depth. In the high-frequency range, the harbour spectrum is lower than that
of the incident waves, due to sheltering by breakwaters. In the low-frequency range
outside the incident-wave spectrum, the harbour spectrum is much higher than that of
the outside sea, due to the excitation of Helmholtz and other low-frequency standing
wave modes.

Application of the present theory to natural harbours of large area and variable
depth requires additional account of the directional distribution of the incident sea
spectrum, and further streamlining of the computing algorithms, both of which are
planned for the future. Changes of the spectral response due to the excitation of
low-frequency edge waves and their influence on the harbour resonance should of
course be of practical interest. Empirical models representing the breaking of short
waves on a sloping beach must be incorporated into the stochastic theory. While
the alternative of laboratory experiments is frequently chosen in harbour design, it is
common experience that distortion of results due to finite basin size is hard to avoid.
This is because the radiation condition in the far field is difficult to fulfil for long
waves. Reflection from distant boundaries such as the basin walls and wavemaker can
introduce spurious peaks not present along an open coast, as pointed out theoretically
by Santos & Peregrine (1998). Therefore for future planning of harbours and other
coastal installations, stochastic theories aided by efficient computer algorithms and
empirical corrections for various types of boundary dissipation may be a more reliable
tool.

In principle the present method can be applied or extended to study slow-drift
motions of moored ships or tethered offshore platforms in shallow seas. These
problems are of increasing importance in the design of LNG (liquified natural gas)
teminals. Near the scatterers, three-dimensional computations are needed, and must
be matched with the mild-slope theory away from the scatterers.

The authors thank the US–Office of Naval Research (Grant N00014-04-1-0077),
US National Science Foundation (Grant CTS-0075713) and US–Israel Binational
Science Foundation for their financial support of this study.
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